

PHYSICAL AND ELECTRICAL CHARACTERIZATION OF RF-SPUTTERED ITO FILMS FOR USE AS SOLAR CELL ELECTRODES AS WELL AS INTERLAYERS IN LOW-RESISTANCE MIS CONTACTS IN GE/SI TRANSISTORS

Koosha Nassiri Nazif, Haydee Pacheco Mentors: Maurice Stevens (SNF), Vijay Narasimhan (IM), Pranav Ramesh ENGR 241, Fall 2017

- Motivation
- Process Overview
- Design of Experiments (DOE)

- Repeatability Tests
- Final Results
- Summary

Motivation

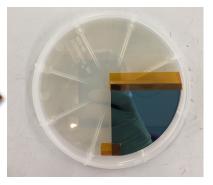
- Process Overview
- Design of Experiments (DOE)

- Repeatability Tests
- Final Results
- Summary
- Future Work

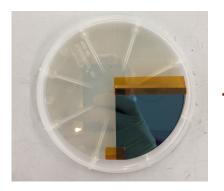
Motivation

	Solar Application	MIS Contact Application					
Usage	Transparent Electrode	Interlayer in MIS contact					
	Ag 10 nm 5 nm 10 nm 5 nm 10 nm 5 nm 10 nm Ag	(a) Metal / insulator / semiconductor contact (b) Metal / $\sim 0 \Delta E_c$ interlayer/ n-semiconductor (c) Metal / $\sim 0 \Delta E_v$ interlayer/ p-semiconductor interlayer with $\sim 0 \Delta E_v$ Free state blockade $\rightarrow Depinning$ ΔE_v (c) Metal / $\sim 0 \Delta E_v$ interlayer/ n-semiconductor interlayer with $\sim 0 \Delta E_c$					
Thickness	50-100 nm 10-30 nm						
Parameters to optimize	Note: These 2 objectives co	(Carrier Concentration) mission over the solar spectrum (AM 1.5) could oppose each other, i.e. <u>more carriers</u> ore absorption and thus <u>decrease</u>					

- Motivation
- Process Overview
- Design of Experiments (DOE)


- Repeatability Tests
- Final Results
- Summary
- Future Work

Process Overview - Sputtering



Glass Wafers + Silicon Quarter Wafers Lesker Sputter

ITO Deposition

Process Overview - Measurements

- Thickness (Alphastep profilometer)
- Sheet Resistance (Prometrix 4-point probe)
- Transmission (Jasco spectrophotometer)
- Stoichiometry (PHI V3 XPS)
- Carrier Concentration (Hall Measurement tool in room 152 – <u>Repeatability Issue</u>)

- Motivation
- Process Overview
- Design of Experiments (DOE)

- Repeatability Tests
- Final Results
- Summary
- Future Work

Design of Experiments (DOE)

- Factors
 - Pressure (3 mTorr 5 mTorr)
 - > Power (50 W 100 W)
 - → O₂/Ar Ratio (0 0.05)
 - → Substrate Bias (0 50 V)
 - Temperature (Room Temperature 270 °C)
 - Excluded from the initial screening
 - due to the complexities involved with the heating system

 $2^4 = 16$ Exp.

Responses

- <u>Resistivity (Minimize)/Carrier Concentration (Maximize)</u>
- > Absorption Coefficient (Minimize)/Optical Transmission (Maximize)
 - Averaged over the solar spectrum (AM 1.5)

Stanford University

DOE 5 Exp. 8 Exp. to observe 3rd order interactions

Design of Experiments (DOE) – Initial Results

				Subs.	Deposition		
	Pressure	O ₂ /Ar	Power	Bias	Rate	Resistivity	Abs. Coeff.
Exp.#	(mTorr)	Ratio	(W)	(V)	(nm/min)	(ohm.cm)	$(1e4*cm^{-1})$
1	5	0.05	100	50	0.82	8.67	6.57
2	5	0.05	50	50	0.43	7.48	7.42
3	5	0	100	0	2.50	2.3e-3	5.49
4	5	0	50	0	1.08	3.9e-3	6.57
5	3	0	100	0	1.78	7.2e-4	6.02
6	3	0	50	0	1.00	5.8e-4	4.98
7	3	0	100	50	1.53	4.8e-4	4.97
8	3	0	50	50	0.81	5.3e-4	5.49

Design of Experiments (DOE) - Analysis

Transmission				Resistivity			
Source O2/Ar ratio Pressure Power Subs. Bias	LogWorth 0.542 0.309 0.289 0.145		PValue 0.28708 0.49038 0.51444 0.71642	Source O2/Ar ratio Pressure Power Subs. Bias	LogWorth 11.730 1.617 0.372 0.087		PValue 0.00000 0.02416 0.42457 0.81845
	Predicted Optimal Recipe						
Pressure (mTorr) 3	O ₂ /Ar Ratio 0	Power (W) 100	Subs. Bias (V) 50	Pressure (mTorr) 3	O ₂ /Ar Ratio 0	Power (W) 100	Subs. Bias (V) 50

- $O_2/Ar ratio$ and then pressure have significant effects on resistivity values.
- High p-values in the transmission data
 - Semi-random distribution no particularly significant factor
 - The predicted optimal recipe for transmission is not reliable.

- Motivation
- Process Overview
- Design of Experiments (DOE)

- Repeatability Tests
- Final Results
- Summary
- Future Work

Repeatability Tests

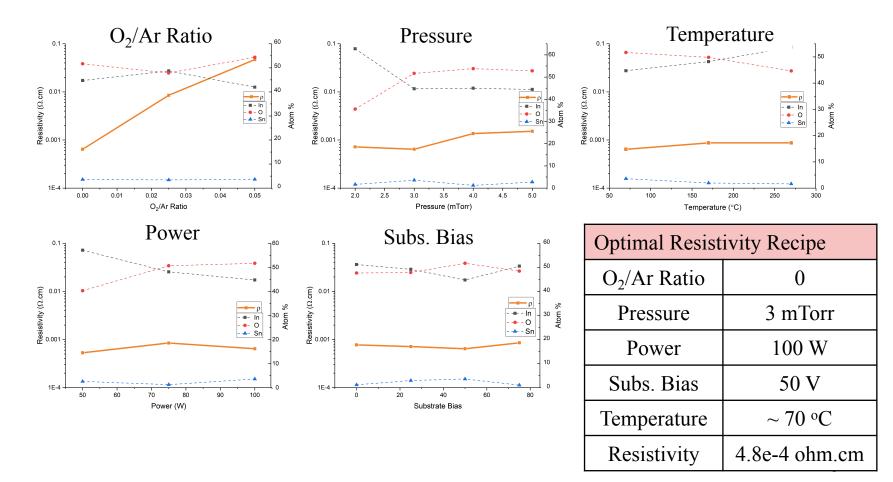
					Resistivity (ohm.cm)		
					1 st Run 2 nd Run		3rd Run
					Target 2 Target 1		Target 2
	Pressure	O_2/Ar	Power	Subs. Bias	Low Base High Base 1		Low Base
Exp.#	(mTorr)	Ratio	(W)	(V)	Pressure Pressure Pressu		Pressure
2	5	0.05	50	50	7.48 13.2 N/		N/A
4	5	0	50	0	3.9e-3 9.8e-03		3.52e-3
7	3	0	100	50	4.8e-4	1.75e-03	6.42e-4
8	3	0	50	50	5.3e-4 1.82e-03 8.45e-		8.45e-4

Resistivity data is repeatable

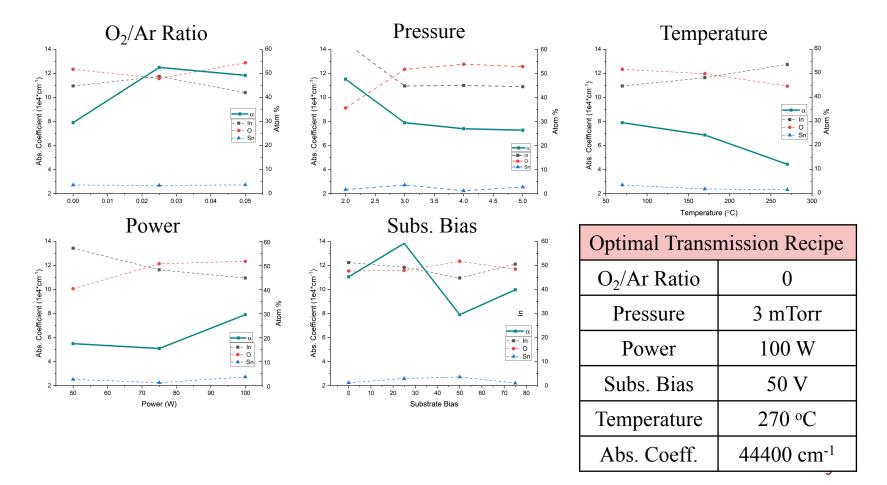
- Resistivity data is self-consistent through the 3 runs.
- High Base Pressure (and switch to target 1) increases the resistivity by a factor of ~2-4.

Repeatability Tests

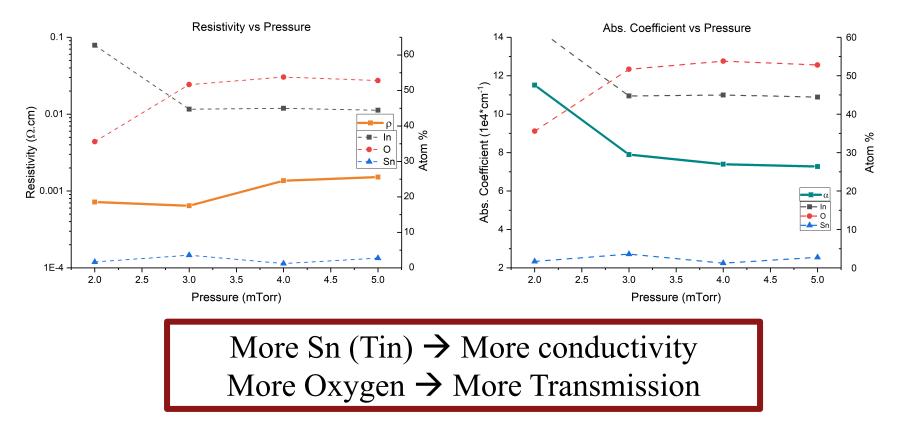
					Abs. Coefficient (1e4*cm ⁻¹)		
					1 st Run 2 nd Run		3 rd Run
					Target 2 Target 1		Target 2
	Pressure	O ₂ /Ar	Power	Subs. Bias	Low Base High Base L		Low Base
Exp.#	(mTorr)	Ratio	(W)	(V)	Pressure Pressure Press		Pressure
2	5	0.05	50	50	7.42 6.98 N		N/A
4	5	0	50	0	6.57	4.58	7.20
7	3	0	100	50	4.97	4.64	7.90
8	3	0	50	50	5.49 8.30 5.08		5.08

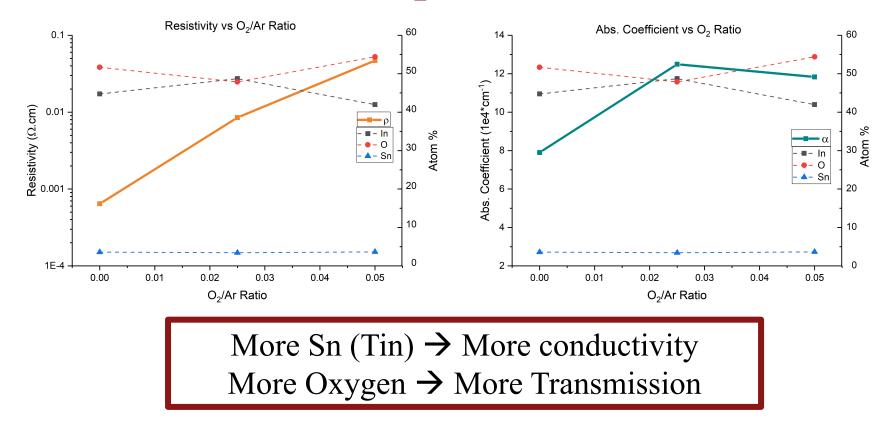

Transmission data is not completely repeatable

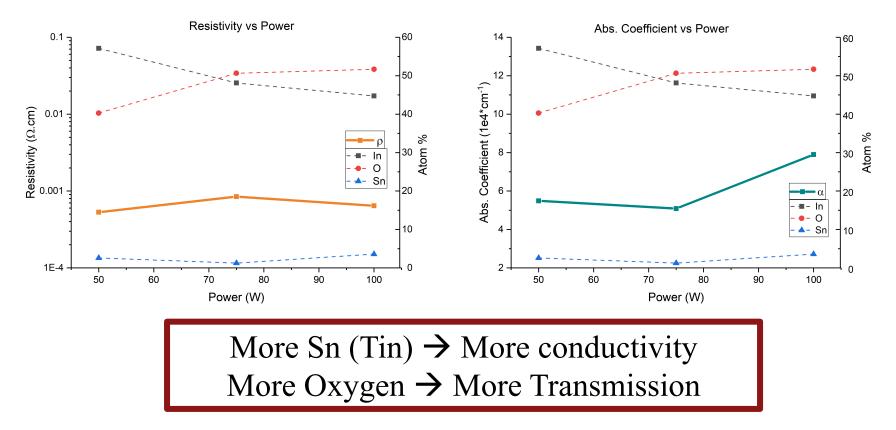
The reason is the semi-randomness nature of the transmission data, as verified by the high p-values.

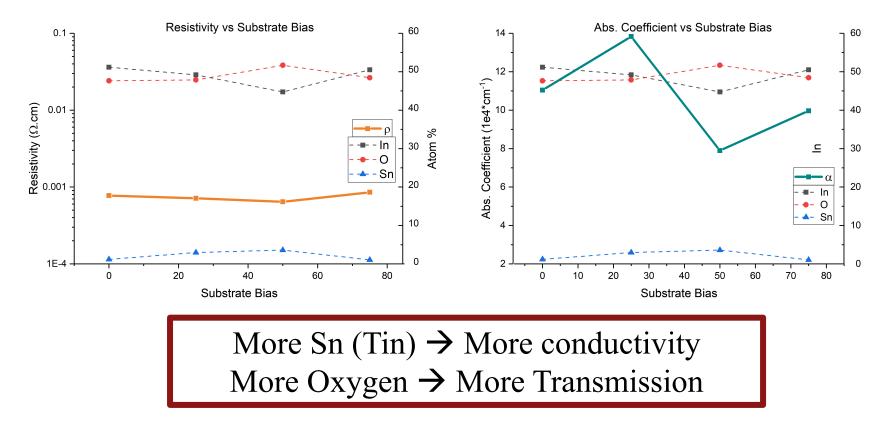

- Motivation
- Process Overview
- Design of Experiments (DOE)

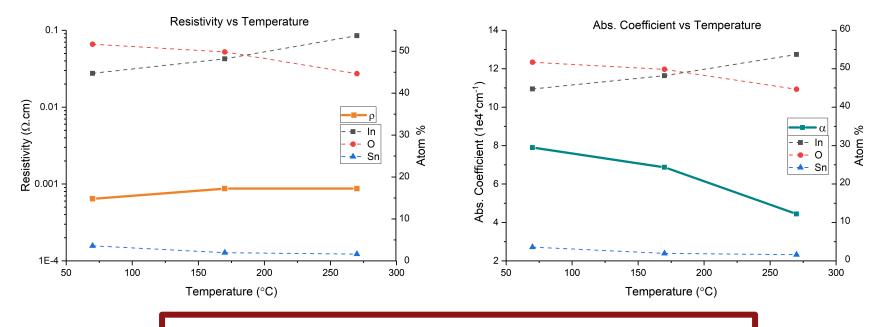
- Repeatability Tests
- Final Results
- Summary
- Future Work


Final Results – Resistivity Trends


Final Results – Transmission Trends


Final Results - Effect of Pressure


Final Results - Effect of O₂/Ar Ratio


Final Results - Effect of Power

Final Results - Effect of Substrate Bias

Final Results - Effect of Temperature

More Sn (Tin) → More conductivity Less Oxygen → More Transmission • Effect of Annealing

- Motivation
- Process Overview
- Design of Experiments (DOE)

- Repeatability Tests
- Final Results
- Summary
- Future Work

Summary

Optimal Recipes

Optimal Resist	ivity Recipe		Optimal Transmission Recipe		
O ₂ /Ar Ratio	0		O ₂ /Ar Ratio	0	
Pressure	3 mTorr		Pressure	3 mTorr	
Power	100 W		Power	100 W	
Subs. Bias	50 V		Subs. Bias	50 V	
Temperature	~ 70 °C		Temperature	270 °C	
Resistivity 4.8e-4 ohm.cm			Abs. Coeff.	44400 cm ⁻¹	

- More Sn \rightarrow More conductivity
- More Oxygen → More Transmission
- More Annealing (Heating) \rightarrow More transmission

- Motivation
- Process Overview
- Design of Experiments (DOE)

- Repeatability Tests
- Final Results
- Summary
- Future Work

Future Work

- Accurate Hall Measurements done at INTERMOLECULAR
 - > Thanks to Vijay Narasimhan
- Fabricating MIS contacts using our optimal resistivity recipe
 - > Done by Pranav Ramesh

Acknowledgement

- SNF Staff
- E 241 Class
- Our mentors
 - > Maurice Stevens
 - > Vijay Narasimhan
 - > Pranav Ramesh

Thank you! <u>koosha@stanford.edu</u> <u>haydee.pacheco@stanford.edu</u>

